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Abstract: The quantum properties of a non-degenerate three-level laser with the parametric amplifier and coupled to a thermal 

reservoir are thoroughly analyzed with the use of the pertinent master equation and stochastic differential equations associated with the 

normal ordering. Applying solutions of resulting differential equations, quadrature variance, the mean and variance of photon number, 

the photon number correlation are calculated. However, the two-mode driving light has no effect on the squeezing properties of the 

cavity modes. Employing the same solutions, one can also obtain anti normally ordered characteristic function defined in the 

Heisenberg picture. For a linear gain coefficient of (A = 100), for a cavity damping constant of K= 0:8, µ = 0 and for thermal reservoir 

��	th = 0, the maximum intra cavity photon entanglement is found at steady state and at threshold to be 60%. 

Keywords: Master Equation, Solution of Stochastic Differential Equations,  

Entanglement Amplification and Langavian Equation 

 

1. Introduction 

Three-level lasers have been an interesting area of research 

over the years in light of its capability to produce radiations 

with various quantum properties [1-10]. The non-classical 

states of light (squeezed states) are characterized by a 

reduction of quantum fluctuations (noise) in one quadrature 

component of light below the vacuum level, or below that 

achievable in a coherent state, at the expense of increased 

fluctuations in the other component such that the product of 

these fluctuations still obeys the uncertainty relation. 

Squeezed light has potential applications in low-noise 

communications and precision measurements [11, 12]. A 

parametric oscillator has been considered as an important 

source of squeezed light. It is one of the most interesting and 

well characterized optical devices in quantum optics. In a 

cascade three-level laser, three level atoms in a cascade 

configuration are injected into a cavity coupled to a thermal 

reservoir via a single-port. When a three-level atom in a 

cascade configuration makes a transition from the top to the 

bottom level via the intermediate level, the two photons are 

generated as shown in figure 1 below. In this device a pump 

photon interacts with a nonlinear crystal inside a cavity and is 

down-converted into two highly correlated photons. If these 

photons have same frequency the device is called a degenerate 

parametric oscillator, otherwise it is called a non-degenerate 

parametric oscillator. The quantum fluctuations and photon 

statistics of signal mode produced by a non-degenerate 

parametric oscillator coupled to a two-mode thermal reservoir 

have been analyzed employing the pertinent Fokker Planck 

equation or the quantum Langevin equations. The quantum 

dynamics of a non-degenerate parametric oscillator coupled to 

a thermal reservoirs have been analyzed employing the Q 

function obtained by solving the Fokker-Planck equation 

using the propagator method [13]. When two particles, such as 

a pair of photons or electrons, become entangled, they remain 

connected even when separated by vast distances (quantum 

Entanglement). A two mode sub harmonic generator at the 

lower and above threshold has been theoretically predicted to 

be a source of light in an entangled state [14]. Recently, the 

experimental realization of the entanglement in two-mode sub 

harmonic generator has been demonstrated by Zhang et al. 

[15]. On the other hand, Xiong et al. [16] have recently 

proposed a scheme for an entanglement based on a 
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non-degenerate three -level laser can atoms are injected at the 

lower level and the top levels are coupled by a strong coherent 

light. They have found that a non-degenerate three level laser 

can generate light in an entangled state employing the 

entanglement criteria for bipartite continuous variables states. 

Moreover, Tan et al. [17] have extended the work of Xiong et 

al. and examined the generation and evolution of entangled 

light in the Wigner representation using the sufficient and 

necessary in separability criteria for a two -mode Gaussian 

state proposed by Duan et al. [18] and Simon [19]. The 

generation and manipulation of entanglement has attracted a 

great deal of interest owing to their wide applications in 

quantum teleportation [20], quantum dense coding [21], 

quantum computation [22], quantum error correction [23], and 

quantum cryptography [24]. The variance of the quadrature 

operators and the photon number distribution for the 

signal-idler modes Producing by generation of entanglement 

from non-degenerate three level laser with parametric 

oscillation have also been studied applying the pertinent 

Langevin equations. One can first obtain stochastic 

differential equations for the cavity mode variables by 

applying the pertinent Master equation [25-28]. With the aid 

of resulting equations, quadrature variance for the two-mode 

cavity radiation and the squeezing are calculated. In addition, 

one can determine the mean photon number, the photon 

number entanglement, and the variance of the photon number 

difference, and the photon number correlation. The mean, the 

variance, and the photon number correlation, in the absence of 

the parametric amplifier (µ = 0) also calculated. 

2. Master Equation 

The equation of evolution of density operator for the 

three-level laser applying the linear and the adiabatic 

approximation schemes first derived [4-7]. Then, one can 

represent the top, intermediate, and bottom levels of a 

three-level atom in a cascade configuration by |��, |�� and|	�, 
respectively, as shown in Figure 1. 

 

Figure 1. Schematic representation of a non-degenerate three level laser with 

a parametric amplifier and a thermal reservoir. 

This figure shows the Entangled Photon Generation from a 

Three-Level Laser with a Parametric Amplifier and coupled to 

a thermal reservoir. In addition, we assume the two modes a 

and b to be at resonance with the two transitions |a� to |b� and 

|a� to |c� dipole allowed respectively, and direct transition 

between levels |a� to |c� to be dipole forbidden. The interaction 

of non-degenerate three-level atom with the cavity modes can 

be described by the Hamiltonian. 


�� 
 ���|����|�� � ���|����| � |���	|�� � ���|	���|.  (1) 

Where g is the coupling constant and ������ is the 

annihilation operators for the cavity modes. Moreover, the 

Hamiltonian describing the parametric interaction [8-11], with 

the pump mode treated classically, can be written as 


��	 
 ��������� � �����.               (2) 

In which µ is proportional to the amplitude of the pump mode 

[12-14]. Here, taking the initial state of a single three-level 

atom and hence, the density operator of a single atom is 

����0! 
 ��"!##|����| � ��"!#$|���	| � ��"!$#	|	���| � ��"!$$	|	��	|.                    (3) 

Moreover, employing Eq. 1, the master equation for the cavity modes coupled to thermal reservoir, put in the form. 

%
%& ���'! 
 ��(
�),*+, � ���#-��� � ����#-	! � �-$��� � ����-$ � ���-#.*/0#� � ���$- � �$-��!  

� 1
� ���'2 � 1!�2������� �	������� � �������! � 1

� ��'2�2������� � ������� � �������!  

� 1
� ���'2 � 1!�2������� � �������	–	�������� �	1� ��'2	�2������� �	������� 	� ��������.                 (4) 

In which the matrix element �67 is defined by 

�67	 
	 �8|���9|:�,                                         (5) 

With α, β = a, b, c. Using once more the adiabatic approximation scheme, we see that 

��#- 
	 ;<0=> ���"!#$����� �	��"!##�����,                                 (6) 

��-$ 	
 	 ;<0=> ���"!$$����� �	��"!#$������.                                (7) 
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Finally, on account of Eqs. (6), and (7), the equation of evolution of the density operator for the cavity modes given by Eq. (4), 

takes the form. 

%
%& ��	�'! 
 	��(
��, ��, +	1� (��'ℎ + 1)[2������� −	������� − �������]+ 

�
� �@�(")## + A��'ℎ�[2������� −	������� 	− �������] 

+ 
�
� B@�(")$$ + A(��'ℎ	 + 1)C (2������� − �������	–	�������,+	��A��'ℎ[2������� 	− 	������� 	−	�������] 

+ 
�
�@�(")#$[������ 	− 	�������� 	+ 	��	������ 	− 	������]+�

�@�(")$#(�������� 	−	�����	��� +	������ 	− 	������,.  (8) 

Where, 

@ = �<0D>
=> .                                           (9) 

Is linear gain coefficient. The equation of evolution of the density operator associated with the Hamiltonian given by Eq. (2) 

has the form. 

%
%& ��(') = 	 �� �[������ 	− 	������ 	+	�������� 	−	��	������]+ 

1
� (��'ℎ + 1)[2������� −	������� 	− 	�������] 

+ 
�
� �@�(")## + A��'ℎ�[2������� 	−	������� 	− 	�������]+ 

�
� B@�(")$$ + A(��'ℎ + 1)C [2������� −	������� 	− 	�������] 

+ 
�
�A��	[2������ 	−	������� 	− 	�������]+ 

�
�@�(")#$(������ 	−	�������� +	�������� −	������, 

+ 
�
�@�(")$#(�������� 	− 	�������� +	������ 	−	������,.                           (10) 

This is the master equation for the cavity modes of a non-degenerate three-level laser whose cavity contains a non –degenerate 

parametric amplifier and coupled to a thermal reservoir. 

A. The Stochastic Differential equations 

Next we seek to determine the solutions of the stochastic differential equations. Thus employing 

%
%& 〈@F〉 	= HI B %

%& ��(')@FC.                                       (11) 

Along with Eq. 11, and applying the cyclic property of the trace operation together with the commutation relations 

[��, ���] = (��, ���, = 1,                                        (12) 

And 

[��, ��] = (��, ��, = (��, ��, = 0.                                     (13) 

We readily obtain 

%
%& 〈��〉 	= 	− J0

� 〈��〉 	+ 	�� K.〈���〉,                                   (14) 

%
%& 〈��〉 	= 	− JL

� 〈��〉 	+	�� K�〈���〉,                                   (15) 

%
%& 〈���〉 	= 	−�#〈���〉 	+	K.〈�����〉,	                                  (16) 

%
%& 〈���〉 	= 	−�$〈���〉 	+	K�〈�����	〉,                                  (17) 

%
%& 〈�����〉 	= 	−�#〈�����〉 + �

�K.〈������〉 	+ 	�� K∗.〈����〉 + @�(")## + A��,                     (18) 

%
%& 〈�����〉 	= 	−�$〈�����〉 	+ 	 ��K�〈������〉 	+ 	��K∗�〈����〉 	+ N��,                         (19) 

%
%& 〈�����〉 	= 	− �

� (�# + �$)〈�����〉 +	�� K�〈����〉 + 	�� K∗.〈����〉,	                         (20) 

%
	%& 〈����〉 	= 	− �

� (�# + �$)〈����〉 + �
� K�〈�����〉 	+	�� K.〈�����〉.                          (21) 

Where, 
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�# 	
 A � @��"!## ,                                      (22) 

�$ 	= 	A + @�(")$$ ,                                      (23) 

	K± 	= 2�	 ± @�(")#$ .                                     (24) 

We note that the corresponding c- numbers are 

%
%& 〈8〉 	= −	J0� 〈8〉 	+ �

� K.〈:∗〉,                                 (25) 

%
%& 〈:〉 	= − JL

� 	 〈:〉 	+
�
� K�〈8∗〉,                                 (26) 

%
%& 〈8�〉 	= 	−�#〈8�〉 	+ 	K.〈:∗8〉,                                (27) 

%
%& 〈:�〉 	= −	�$〈:�〉 	+	K�〈8∗:〉,                                (28) 

%
%& 〈8∗8〉 	= 	−�#〈8∗8〉	+ �

� K.〈8∗:∗〉 	+ �
�K∗.〈8:〉 	+ @�(")## + A��,                 (29) 

%
%& 〈:∗:〉 	= 	−�$〈:∗:〉 	+ 	��K�〈:∗8∗〉 	+ �

�K∗�〈8:〉 	+ @�(")$$ + A��,                 (30) 

%
%& 〈8∗:〉 	= 	− �

� (�# + �$)〈8∗:〉 + �
� K�〈8∗�〉 	+ �

�K∗.〈:∗�〉,                      (31) 

%
%& 〈8:〉 	= 	− �

� (�# + �$)〈8:〉 +	��K�〈8∗8〉 	+	�� K.〈:∗:〉.                      (32) 

On basis of Eqs. (25), and (26), we can write 

%
%& 8(') = 	− J0

� 〈8〉 	+ �
� K.〈:∗〉 	+ 	P6('),                          (33) 

%
	%& :∗(') = −	JL� 〈:〉 	+	��K�〈8∗〉 	+ P∗7(').                        (34) 

Where fα (t) and fβ (t) are noise forces. We now proceed to determine the properties of the noise force. The expectation value 

of Eqs. (33) and (34) are found to be 

%
%& 〈8(')〉 	= 	− J0

� 〈8〉 	+ 	�� K.〈:∗〉 	+ 〈P6(')〉,                         (35) 

%
%& 〈:∗(')〉 	= 	− JL

� 〈:〉 	+ 	�� K�〈8∗〉 	+	 〈P7(')〉.                        (36) 

Comparison of Eqs. (25) and (35) as well as Eqs. (26) and (36) yields 

〈P6(')〉 	= 	 〈P7(')〉 	= 0.                                 (37) 

The formal solutions of Eqs. (36) and (37) can be put in the form 

8(') = 	8(0)Q.R0	S
> 	+ 	T Q.R0(SUSV)

>&
" 	W�� K.:∗('X) +	P6('X)Y Z'X,                      (38) 

:∗(') = 	:(0)Q.RL
> &	 +	T Q.RL(SUSV)

>&
" W�� K∗�8('X) +	P∗7('X)Y Z'X.                      (39) 

Moreover, applying the relation 

%
%& 〈8(')8(')〉 	= 	 〈8(') [ %

%& 8(')\〉 	+ 	〈[ %
%& 8(')\ 8(')〉.                      (40) 

Along with Eq. (35), one can readily verify that 

%
%& 〈8�〉 	= 	−�#〈8�(')〉 	+ 	K∗.〈8(')〉 	+ 2〈8(')P6(')〉.                         (41) 

With aid of Eq. (36), one can readily verify that using the same relation 

〈:∗(')P6(')〉 	= 0.                                        (42) 
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In view of this result, one can readily get 

T Q
R0�SUSV!

> 〈]̂ �&V!]̂ �&!〉%&V.&
"                                       (43) 

Applying the relation 

T Q_0(SUSV)>&
" 〈P(')�('X)〉Z'X = `,                                   (44) 

We assert that 

〈P(')�('X)〉 	= 2`a(' − 'X), 
Where a and D are a constants or some function of time t. We then see that 

〈P6('X)P6(')〉 	= 0.                                        (45) 

It can also be established in similar manner that 

〈P7('X)P7(')〉 	= 	 〈P∗6('X)P7(')〉 	= 0.                                (46) 

With Eq. (35) and its complex conjugate, we have 

%
%& 〈8∗8〉 	= −�#〈8∗8〉	+	�� K.〈8∗:∗〉 	+ 	�� K∗.〈8:〉 	+ 	〈8∗(')P6(')〉 	+	 〈P6∗(')8(')〉.       (47) 

3. Quadrature Variance 

Here seeking to analyze the quadrature squeezing 

properties of the two-mode light in the cavity can be described 

by two quadrature’s [15-16]. 

	̂� 	= 	 	̂� + 	̂,                  (48) 

	̂. 	= �(	̂� −	 	̂).               (49) 

Where, 

	̂ 	= 	 �√� ��� 	+ ���,              (50) 

	̂� 	= 	 �√� ���� 	+ ����.           (51) 

Are the two-mode cavity operators, ��  and ��  are 

annihilation operators for cavity modes a and b. In view of Eq. 

(50) and Eq. (51), one can write Eq. (48) as 

	̂� 	= 	 �√� (�� + �� 	+ ��� 	+ ���,.      (52) 

It then follows that 

	̂� 	= 	 �√� (��� 	+ 	���,.         (53) 

Following a similar procedure, we get 

	̂. 	= 	 d
√� (��. 	+ 	��.,.        (54) 

Where, 

��� 	= 	 �� 	+ ���, ��. 	= �(��� 	− ��),     (55) 

��� 	= �� 	+ ���, ��. 	= ����� 	− 	���.     (56) 

Employing the commutation relation of the cavity mode 

operators 

[��, ���] = (��, ���, = 	1.         (57) 

The quadrature operators 	̂�  and 	̂.  are Hermitian and 

satisfy the commutation relation 

[	̂�, 	̂.] = 2�.            (58) 

The variance of the plus and minus quadrature operators of 

the two-mode cavity light are defined by 

(∆	̂�)� 	= 〈	̂��〉 	− 〈	̂�〉�,         (59) 

And 

(∆	̂.)� 	= 〈	̂.�〉 	− 	〈	̂.〉�.		         (60) 

On account of Eqs. (48) and (59), the plus quadrature 

variance can be expressed in terms of the creation and 

annihilation operators as 

(∆	̂�)� 	= 	 〈	̂	̂�〉 	+	 〈	̂�	̂〉 	+ 	 〈		+�〉 	+ 	〈	̂��〉 	− 	〈	̂〉� 	− 	〈	̂�〉� 	− 2〈	̂〉〈	̂�〉,                 (61) 

And with the help of Eqs. (49) and (60), we get 

(∆	̂.)� 	= 	 〈	̂	̂�〉 	+	 〈	̂�	̂〉 	− 	 〈	̂�〉 	− 〈	̂��〉 	+	 〈	̂〉� 	+ 	 〈	̂�〉� 	− 2〈	̂〉〈		+�〉.                 (62) 

So that inspection of Eqs. (61) and (62) shows that 

(∆	̂±)� =	 〈	̂	̂�〉 	+ 	〈	̂�	̂〉 	± 	 〈	̂�〉 ±	 〈	̂��〉 ∓ 	〈	̂〉� ∓	〈	̂�〉� 	− 2〈	̂〉〈	̂�〉.	                  (63) 



48 Negasa Belay Ayana:  Light Entanglement from a Non-Degenerate Three-Level Laser with a  

Parametric Amplifier and Coupled to a Thermal Reservoir 

This can be expressed in terms of c-number variables associated with the normal ordering as 

�	̂O!� 	
 	 〈g�'!g∗�'!〉 	� 〈g∗�'!g�'!〉 O	 〈g��'!〉 O 	 〈g∗��'!〉 ∓ 	〈g�'!〉� ∓	〈g∗�'!〉� 	� 2〈g�'!〉〈g∗�'!〉         (64) 

Where γ (t) is the c-number variable corresponding to the operator 	̂(t). The c-number equation corresponding to 

Eq. (50) can be written as 

g�'! 
 �
√� �8�'! � 	:�'!?.                                     (65) 

And application of Eq. (65) to Eq. (64) leads to 

∆	̂O� 	
 1 O	 ��� 〈8��'!〉 	� 〈8∗��'!〉 	�	 〈:��'!〉 	� 〈:∗��'!〉 �	 〈8�'!:�'!〉 	� 〈8∗�'!:∗�'!〉 	O 	〈8∗�'!8�'!〉  

�〈:∗�'!:�'!〉 	� 〈8∗�'!:�'!〉 	� 	〈:∗�'!8�'!〉? ∓ 	�� 〈�8∗�'! 	� :∗�'! O 	8�'! � :�'!�〉�.            (66) 

Assuming that the cavity modes are initially in vacuum state along with the fact that a noise force at a certain time does not 

affect the cavity mode variables at earlier time [17-19], we easily find 

〈8��'!〉 	
 0,                                          (67) 

In a similar manner, we see that 

〈:��'!〉 	
 0,                                          (68) 

〈8∗�'!:�'!〉 	
 	 〈:∗�'!8�'!〉 	
 	0.	                                 (69) 

Now with the aid of Eqs. (67), (68), and (69), we arrive at 

∆	O� 	
 	1 � �
� �〈8�'!:�'!〉 	�	 〈8∗�'!:∗�'!〉? O 	〈8∗�'!8�'!〉 	� 〈:∗�'!:�'!〉.              (70) 

Since	〈8�'!:�'!〉 	
 	 〈8∗�'!:∗�'!〉, we then see that 

∆	O� 	
 1 �	〈8�'!:�'!〉 O	 〈8∗�'!8�'!〉 	� 〈:∗�'!:�'!〉.                      (71) 

This takes the form 

∆	�O	 
 1 � �1���.h!��1���h��!��iJ>�h.j1�h>k�&l
j�1�m��h!.jJ>?��1��h! O	2A�4��@	√1�o2�2A�@o�@O4�!4(A�N�@o!�4�2	,�2A�@o!   

� j1���1��h!��1��hOjJ!k�k��>��O	√�.h>�k�&l?
j�1�m��h!.jJ>?��1��h! .                                      (72) 

This represents the quadrature variances of the cavity modes 

for a non-degenerate three level laser whose cavity contains a 

parametric amplifier and coupled to a thermal reservoir. 

 

Figure 2. The quadrature variances versus η for A = 100, κ = 0:8, µ = 0:399, 

and ��th = 0:5. 

Plot in Figure 2 indicates that the maximum intra cavity 

squeezing for the above values and within the parametric 

amplifier is 50% below the coherent state level. Figure 2 is the 

plot of variance of the minus quadrature versus η with 

parametric amplifier in non-degenerate three-level laser 

cavity. 

Next upon setting ��th = µ = 0 in Eq. (72), we get 

∆	̂O� 	
 1 �	���.h!��1���h��!.�√�.h>	��1��h��!��1��h!��1��h! .	 (73) 

This is the quadrature variances of the cavity modes for a 

non-degenerate three-level laser. 

In Figure 3 the minimum value of the quadrature variance 

described by Equation. (73) for A = 100, k = 0:8, and ��th = µ 

= 0 is found to be ∆	.�= 0.45 and occurs at η = 0:16. This result 

implies that the maximum intra cavity squeezing for the above 

values is 40% below the coherent-state level. The plots in 

Figure 3 represent the variances of the minus quadrature of the 

cavity modes for a non-degenerate three-level laser alone. 
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Figure 3. The quadrature variances versus η for A = 100, K = 0:8, µ = 0, and 

��th = 0. 

4. Photon Statistics 

A. The mean and the variance of the photon number 

The mean photon number for the two-modes in terms of 

density operator can be expressed as 

〈	̂��'!	̂�'!〉 	
 	HI���'!	̂��0!	̂�0!�,      (74) 

In which 

	̂ 	
 �� 	� 	��,               (75) 

	̂� 	
 ��� 	� 	���.             (76) 

Where ��, ��	��Z		̂ are the annihilation operators for a light 

mode a, light mode b, and the two-mode light, respectively 

[20-24]. Employing Eqs. (73) And (74), Eq. (72) can be 

written as 

〈	̂��'!	̂�'!〉 	
 	 〈����'!���'!〉 	� 	〈����'!���'!〉 	�	 〈���	�'!���'!〉 	�	 〈������'!〉.               (77) 

Employing the relation 

TZ�8Q.#6∗6	�-6�$6∗ 	
 p
# Q

/L
0 ,                                    (78) 

With performing the integration over λ, it yields 

〈����'!���'!〉 	
 	 �pq �r� 	� K�! %>
%s%tTZ�8Z�:Z�o	exp	��o∗o	 � o∗�8 � x!  

�o�8∗ 	� K: � K8 ∗! exp��8∗8	 � y8	 � K8∗:∗ 	� r:∗:! |y 
 x 
 0.       (79) 

So that carrying out the integration over β and η, there follows 

〈����'!���'!〉 	
 	 �pq �r� � K�! T Z�8	exp	��8∗8�z>.{>z ! � 8∗�rx � r�x � K�x! � y8!|	y 
 x 
 0.      (80) 

Performing differentiation, by applying the condition, x = y = 0, we readily obtain 

〈����'!���'!〉 	
 	� � 1.                                      (81) 

Similarly, following the same procedure, we note that 

〈b���t!b��t!〉 	
 	b � 1.                                       (82) 

Now we see that 

n� 	
 	 ���j���√�.�>���������.j�!j�������!.j�>?������! � j��������!�������j�!����	��>��.√�.�>!����?
j�������!.j�>?������! .               (83) 

 

Figure 4. The mean photon number versus η for A = 100, κ = 0:8, µ = 0:399, 

and ��th = 0:5. 

The plot on Figure 4 shows that the mean photon number of 

Eq. (83) for the values A = 100, κ = 0:8, µ = 0:399, and ��th = 

0.5. The results show that as η increases the mean photon 

number decreases. 

Finally, in the absence of both parametric amplifier (when µ 

= 0) and thermal reservoir (when ��th = 0), the mean photon 

number of Eq. (83) turns out to be 

n� 	
 	 ��√�.�>!������	��!���	���!������! .          (84) 

Figure 5 shows that the plot of mean photon number in the 

absence of both parametric amplifier and thermal reservoir for 

the values A = 100, κ = 0:8, µ = 0, and ��th = 0. The plot in 

Figure 5 shows that the mean photon number decrease as η 

increases. 
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Figure 5. The mean photon number versus η for A = 100, κ = 0:8, µ = 0, and 

��th = 0. 

B. The Variance of the Photon Number Difference 

The variance of the photon number at steady state can be 

expressed as 

	�Δ�!� 	
 	 〈�	̂�	̂!�〉 	� 	〈	̂�	̂〉�.        (85) 

Where, 

c� 	
 a� 	� b�, 
c�� 	
 	 a�� 	� 	b��.              (86) 

And 

γ	 
 α � 	β, 
γ∗ 	
 	 α∗ 	� 	β∗.	               (87) 

Are c-number variables associated with the normal ordering. 

The Photon number variance takes the form 

�Δ�!� 	
 	 〈	̂�	̂〉〈	̂	̂�〉 	�	 〈	̂�〉〈	̂��〉,    (88) 

From which follows 

�Δ�!� 	
 2�1 � 〈	̂�	̂〉? �	 〈	̂�〉〈	̂��〉.    (89) 

It is possible to write in c-number as 

�Δ�!� 	
 	2�1 �	 〈8�'! � :�'!!�8∗�'! � 	:∗�'!!〉? � 〈�8�'!:�'!��〉 	� 	 〈�8∗�'! � 	:∗�'!!〉.	          (90) 

With the aid of 

〈8∗�'!:∗�'!〉 	
 	 〈8�'!:�'!〉.                                 (91) 

One can verify that 

�Δ�!� 	
 	2�1 � 〈8∗�'!8�'!〉 	� 	 〈:∗�'!:�'!〉 	� 2〈8�'!:�'!〉?.                    (92) 

Thus the variance of the photon number takes the form 

�Δ�!� 	
 2 � 2 W�1�jJ	��√�.h>���1��h��.jJ!j�1�1��h!.jJ>?��1��h! Y � 2 Wj1(��1��h!��1��h�jJ!k�S���>��.√�.h>�k�S�,j�1�1��h!.jJ>	?��1��h! Y� 4 �2A@�1�o!�2A�2@o�@!�16�2@o�4A@2o2��4(A�A�@o!�4�2	,�2A�@o! 	�.  

(93) 

This is the photon number variance for a coherently driven 

three-level laser with parametric amplifier 

 

Figure 6. The variance of photon number difference versus η for A = 100, κ = 

0:8, µ = 0:399, and ��th = 0. 

Figure 6 shows that the plot of photon number variance in 

the absence of thermal reservoir for the values A = 100, κ = 0:8, 

µ = 0:399, and ��th = 0. The plot in Figure 6 shows that the 

variance of photon number decrease as η increases. 

Furthermore, in the absence of both parametric amplifier 

(when µ = 0) and thermal reservoir (when �� th = 0, the 

variance of the photon number described by Eq. (93) reduces 

to 

�Δ�!� 	
 2 � 2 W�1��√�.h>���1��h��!j�1�1��h!?��1��h! Y  

�4 W�1���.h!��1���h��!j�1�1��h!?��1��h! Y.          (94) 

 

Figure 7. The variance of photon number difference versus η for A = 100, κ = 

0:8, µ = 0, and ��th = 0. 
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Figure 7 shows that the plot of photon number variance in 

the absence of both parametric amplifier and thermal reservoir 

for the values A = 100, κ = 0:8, µ = 0, and ��th = 0. The plot in 

Figure 7 shows that the variance of photon number decrease 

as η increases. 

5. Entaglement Amplification 

Here the entanglement condition of the two modes in the 

cavity was studied. A pair of particles is taken to be entangled 

in quantum theory, if its states cannot be expressed as a 

product of the states of its individual constituents. The 

preparation and manipulation of these entangled states that 

have non-classical and nonlocal properties lead to a better 

understanding of the basic quantum principles [25-28]. That is, 

if the density operator for the combined state cannot be 

described as a combination of the product of density operators 

of the constituents. 

�	+ ≠ ∑ �������!⨂�����!	� ,           (95) 

Where ⨂ 
	 ���'��Q� , �� 	≥ 0	��Z	 ∑ �� 	= 1�  is set to 

ensure normalization of the combined density of state. 

To study the properties of entanglement produced by this 

quantum optical system, we need an entanglement criterion 

for the system. According to the criteria set by Duan et al. [20], 

a quantum state of the system is entangled provided that the 

sum of the variances of the two EPR 

(Einstein-Podolsky-Rosen)-type operators (entanglement) r�  

and K�	sat isfies the condition; 

(Δr�)� 	+ (ΔK�)�	 	< 2.         (96) 

Where, 

r� 	= 	 y�# 	− 	y�- , K� 	= 	 �̂# 	+ 	 �̂- ,       (97) 

With 

y�# 	= 	 (#��	�#�)√� , y�- 	= 	 (-��	�-�)√� ,         (98) 

�̂# 	= d(#��	.#�)
√� , �̂- 	= 	 d(-��	.-�)√� .	        (99) 

Being the quadrature operators for modes ��  and	�� . The 

total variance of the operators ^ u and ^ v can be written as 

(∆u�)� 	+ (∆v�)� 	< 2.         (100) 

This implies that 

(∆u�)� 	= 〈u�〉 	−	 〈u〉�.	         (101) 

On account of Eq. 101, we see that 

(∆u�)� 	= 	 〈(�� (a� 	+ a��)〉 − 〈�� �b� 	+ b����)〉.    (102) 

From which follows 

(∆r�)� 	= 	 �� �1 + 2〈�����〉? −	�� (2〈����〉, + �
� (1 + 2〈�����〉,.	                        (103) 

It then follows that 

(∆r�)� 	= 1 + 2〈�����〉 	+ 2〈�����〉 	− 2〈����〉.	                             (104) 

It is possible to write Eq. (104), in case of c-number variables. 

(∆r�)� 	 = �1	 + 2〈8∗(')8(')〉 	+ 	2〈:∗('):(')〉 	− 2〈8('):(')〉	?,	                         (105) 

Following the same procedure, we easily obtain 

(∆K�)� 	 = �1 + 2〈8∗(')8(')〉 	+ 2〈:∗('):(')〉 	− 2〈8('):(')〉?.	                         (106) 

Thus, the sum of the variances of u and v can be expressed as 

(∆r�)� 	+ (∆K)� 	= 2(∆r�)� 	= 2(∆	̂±)�.                              (107) 

From this result that the degree of entanglement is directly proportional to the degree of squeezing of the two-mode light. 

Therefore, we see that 

(∆r�)� + (∆K�)� = 2�1 + 2〈8∗(')8(')〉 	+ 2〈:∗('):(')〉 − 2〈8('):(')〉?.                   (108) 

This can be rewritten as 

(∆r�)� 	+ (∆K�)� 	= 2 + 2〈8∗(')8(')〉 	+ 2〈:∗('):(')〉 	− 4〈8('):(')〉.                    (109) 

In view of Eqs. (73), (74), and (75), Eq. (108) takes the form 

(∆�+)� 	+ (∆K�)� 	= 2 + 2 ��1BjJ�� �.h>C(�1��h��.jJ)j�m(m��h).jJ>?(�1��h) ¡ + 2 �4AW(2A+@o)(2A+@o+4�)(��'ℎ)+@2B1− 1−o2C(��'ℎ)Y4�N(N+@o)−4�2	?(2A+@o) ¡	  

+4 W�1�(�.h)(�1���h��)��iJ>�h.j1�>h>k�S�j�m(m��h).jJ>	?(�1��h) Y.                                      (110) 
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Considering the case in which the parametric amplifier is removed from the cavity. Thus setting µ = 0 in Eq. (110), one can 

readily verify that 

�∆r�!� 	� �K�!� 	
 2 W1 � ���.h!��1���h!.��>h>k�S�
��m��h!��1��h! Y O	 �	� �.h>��1��h�����k�S�!��m��h!��1��h! 	� (��1��h!>k�	��>k�S�,

��m��h!��1��h! �.         (111) 

This represents the photon entanglement of the cavity 

modes for a non-degenerate three level lasers coupled to a 

two-mode squeezed vacuum reservoir. 

 

Figure 8. ∆r�� 	�	∆K��of two-mode light in the cavity at steady state versus η 

for κ = 0:8, A = 100, µ = 0, and ��th = 0:5. 

The minimum value of the photon entanglement is found to 

be Δ¢� 	� ΔK�	= 0:144 and occurs at η = 0:1. For A = 100, κ = 

0:8, µ = 0, and ��th = 0:5. This indicates that the maximum 

intra cavity squeezing for the above values and in the absence 

of parametric amplifier is 90% below the coherent state level. 

Figure 8 is the plots of the photon entanglement versus η in the 

absence of parametric amplifier in non-degenerate three-level 

laser cavity. This figure shows that the increase of the degree 

of squeezing due to the parametric amplifier is not significant. 

Now consider the case in which the nonlinear crystal is 

removed from the cavity and the cavity is coupled to a 

two-mode vacuum reservoir. Then upon setting µ = �� = 0 in 

Eq. (110), we get 

�Δr�!� � �ΔK�!� 	
 	2 �1	 �	���.h!��1���h��!.� �.h>��1��h��!��m��h!��1��h! �.	                   (112) 

This is the photon entanglement of the cavity modes of a 

non-degenerate three-level laser with vacuum reservoir. 

 

Figure 9. £r�� 	� £K��	Of two-mode light in the cavity at steady state versus η 

for κ = 0:8, A = 100, µ = 0, and ��th = 0. 

The minimum value of the photon entanglement described 

by (112) for A = 100, k = 0.8, µ = 0 and �� = 0 is found to be 

70% and occurs at η = 0:16. This result implies that the 

maximum intracavity squeezing for the above values is 75% 

below the coherent-state level. The plots in Figure 9 

represent the photon entanglement of the cavity modes for a 

non-degenerate three-level laser alone. 

6. Conclusion 

In this article, the squeezing, entanglement, and statistical 

properties of the light produced by a non-degenerate 

three-level laser coupled to a two-mode thermal reservoir have 

been analyzed in the linear and adiabatic approximation 

schemes in the good cavity limit. Then using the master 

equation, stochastic differential equations was obtained. 

Applying the solutions of the resulting differential equations, 

the quadrature variance was calculated. Employing the 

solutions for the 	-number cavity mode variables along with 

the correlation property of noise forces associated with a 

normal ordering, the quadrature squeezing, photon 

entanglement, mean number of photon numbers are obtained. 

Increasing the amplitude of the parametric amplifier increases 

the mean photon numbers and the variances of the photon 

numbers have also been founded. The effect of the squeezed 

vacuum is to enhance the degree of squeezing of the 

signal-idler modes was observed. Furthermore, the mean 

photon number of mode a is greater than that of mode b have 

been resulted. Both the mean photon number and the 

quadrature variance for the two-mode laser light beams are the 

sum of the mean photon numbers and the quadrature variances 

of the constituent two-mode laser light beams had been 

founded. Therefore, the increase in the mean photon number is 

observed in a region, where the degrees of two-mode 

squeezing and entanglement are significant making the system 

under consideration available source of intense squeezed, as 

well as entangled, light. 
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