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Abstract 

Due to the uncertainty and fuzziness of information, the traditional clustering analysis method sometimes cannot meet the 

requirement in practice. The clustering method based on intuitionistic fuzzy set has attracted more and more scholars attention 

nowadays. This paper discusses the intuitionistic fuzzy C-means clustering algorithm. There are a number of clustering 

techniques developed in the past using different distance/similarity measure. In this paper, we proposed a improved edge 

density minimal spanning tree initilization method using LINEX hellinger distance based weighted LINEX intuitionistic fuzzy 

c means clustering. IFCM considered an uncertainty parameter called hesitation degree and incorporated a new objective 

function which is based upon intutionistic fuzzy entropy in the conventional Fuzzy C-means. The clustering algorithm has 

membership and non membership degrees as intervals. Information regarding membership and typicality degrees of samples to 

all clusters is given by algorithm. Furthermore, the algorithm is extended for calculating membership and updating prototypes 

by minimizing the new objective function of weighted LINEX intuitionistic fuzzy c-means. Finally, the developed algorithms 

are illustrated through conducting experiments on random dataset, partition coefficient and validation function are used to 

evaluate the validity of clustering also this paper compares the results of proposed method with the results of existing basic 

intuitionistic fuzzy c-means. 
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1. Introduction 

Clustering helps in finding natural boundaries in the data 

whereas fuzzy clustering can be used to handle the problem 

of vague boundaries of clusters. In fuzzy clustering, the re-

quirement of crisp partition of the data is replaced by a 

weaker requirement of fuzzy partition, where the associa-

tions among data are represented by fuzzy relations. Cluster-

ing is the process of assigning data objects into a set of dis-

joint groups called clusters so that objects in each cluster are 

more similar to each other than objects from different clus-

ters. Clustering algorithms work by assigning objects to a 

group if they show high level of similarity and by assigning 

objects to different groups if they are distinguished from 
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each other. 

Atanassov [1] presented “Intuitionistic fuzzy sets” that 

considers vulnerability in the definition of the membership 

value. Different approaches have been designed with the 

Intuitionistic theory for the process of image segmentation. 

Chaira [3] has given a novel Intuitionistic fuzzy c-means 

(IFCM) clustering algorithm for the process of partitioning 

an image into segments. It includes hesitation degree and a 

new parameter termed as intuitionistic fuzzy entropy (IFE) in 

the objective function. Although this strategy utilizes the 

irregular initialization of cluster prototype which produces 

inaccurate results when chosen randomly. This method does 

not include the local information and the spatial information, 

hence is sensitive to disturbances and other image artifacts 

[2, 10]. In order to make clustering more robust, Intuition-

istic Fuzzy C-means clustering [6] assume that a pixel be-

longs to multiple clusters with different membership degrees 

[12]. These algorithms utilized only intensity of pixel as the 

only feature for the segmentation of images and failed to 

classify noisy pixels accurately. The pixels in an image are 

exceedingly associated, i. e. the every pixel in the prompt 

vicinity have about the equivalent feature information unless 

there is some curve or contour. Subsequently, integrating 

spatial information along with the membership value results 

in more homogenous regions as compared to other methods. 

However, these techniques use the arbitrary initialization of 

cluster centers which give inaccurate outcomes and more 

time for optimization. 

A recent development is to use kernel method to construct 

the evolutionary kernel intuitionistic fuzzy c-means cluster-

ing algorithm, the new probability similarity measurement 

method and clustering technique are also proposed to design 

adaptive weights for intuitionistic fuzzy distances [7]. In 

Zhao F‟s research [13] the intuitionistic fuzzy set and rough 

set are combined with the statistical feature extraction tech-

nology. The intuitionistic fuzzy set is used to extract the re-

gions of interest, and the gray scale co-occurrence matrix is 

used for feature extraction. Pop PC [9] proposed clustering 

algorithms based on the minimum spanning tree (MST) are 

able to detect clusters with arbitrary shapes. In Cheng D‟s 

research [4] the algorithm uses a new distance between local 

density peaks based on shared neighbors to construct a min-

imum spanning tree on the local density peaks, which ex-

cludes the interference of noise points and reduces the run-

ning time of MST-based clustering algorithms. A modified 

non-membership function to generate intuitionistic fuzzy set, 

which highlights the effect of uncertainty and makes good 

use of image information. A method of determining initial 

clustering centers based on pixel characteristics is also pro-

posed by Jun Kong, Jian Hou, Min Jiang & Jinhua Sun [5]. 

Intuitionistic fuzzy C-means (IFCM) algorithm, as a success-

ful extension and variant of FCM, has attracted extensive 

attention and has been widely used in many fields such as 

image processing and pattern recognition by [8, 11, 14]. Alt-

hough the above methods are claimed to be robust to noise, 

they are confronted with the problem of selecting the param-

eters that control the role of the spatial constraints. 

In this paper, to overcome the defects of the algorithms as 

mentioned, we proposed weighted–LINEX HELLINGER 

distance using IFCM, which requires the determination of 

the edge density and degree of minimal spanning, named the 

MST using weighted LINEX_IFCM. The intuitionistic fuzz-

iness is embedded into the calculation process of similarity 

between the pixel and cluster centers, which achieves more 

accurate segmentation in the organization boundary. The 

algorithm is minimal spanning tree initialization method us-

ing LINEX HELLINGER_IFCM, which helps to speed up 

the convergence of the algorithm. 

2. Minimal Spanning Tree Algorithm 

In this section, we proposed LINEX HELLINGER dis-

tance measures for construct the minimal spanning tree. 

2.1. Hellinger Distance 

Let M and N discrete probabilistic distributions with 

)km.....,2m,1m(M   and )kn.....,2n,1n(N  . Then 

Hellinger distance will be 

 



k

1i

2
inim

2

1
)N,M(Hd  

So Hellinger distance is directly related to the Euclidean 

norm [17], 
2

NM
2

1
)N,M(Hd   

The Hellinger distance posseses the following characteris-

tics: 

i. Its values range between 0 and 1, where 0 signifies 

complete similarity between two distributions and 1 

indicates complete dissimilarity. 

ii. When two distributions are very similar, the Hellinger 

distance approcahes. 

iii. The Hellinger distance is symmetric, meaning 

)M,N(Hd)N,M(Hd  . Compared to other distance 

metrices, such as Kullback-Leibler (KL) divergence ot 

total variation distance, Hellinger distance is more ro-

bust to outliers and in certain cases more accessible to 

compute. It finds widespread application in probability 

distribution comparisons and model fitting. 

2.2. LINEX HELLINGER Distance Based MST 

Given the grayscale point set D, the hierarchical methods 

starts by constructing a minimal spanning tree (MST) from 

the points in D. In
  nx..,.........2x,1xx

and

  ny..,.........2y,1yy
 are two points of a MST and 

)y,x(e
is an edge between x and y then LINEX Hellinger 
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distance function between x and y is denoted by 
)y,x(d

and 

calculated using equation (1) 

1yx
2

1
yx

2

1
exp)y,x(dLINEX 



























  (1) 

2.3. Edge Density Weight of MST 

)E,V(T  is the minimum spanning tree generated from 

dataset X of size N, where  Nv....,.........2v,1vV   are 

vertices corresponding to objects,  1Ne..,.........2e,1eE   

are edges corresponding to connection relationship between 

objects. 

Edge density weight 

)y(deg*)x(deg*)y,x(LINEXdEDW         (2) 

where 

1yx
2

1
yx

2

1
exp)y,x(dLINEX 



























 , 

deg (x) = degree of x from MST and 

deg (y) = degree of y from MST. 

2.4. Algorithm for Optimal Number of Clusters 

The Algorithm: LINEX HELLINGER BASED MST 

Input: Data points 

Output: optimal number of cluster centers 

Let e1 be an edge in the LINEX measure MST constructed 

from Data points 

Let TS  be the set of disjoint subtrees of LINEX measure 

MST. 

1. Create a node v, for each data points. 

2. Compute the edge weight using equation (1) 

3. Construct an LINEX measure MST from 2. 

4. Compute the Edge density weight using equation (2) 

5.  C,1cn,TS  

6. For each 1MST1e  . 

7. To remove longest edge or 













 


2

w)EDWmax(
ww from MST 

8. 'T//}'T{TSTS  is new disjoint subtrees (re-

gions). 

9. 1cncn  . 

10. Compute the center iTofic  using average of points. 

11. }ic{TS
iTC  . 

12. )iT( = Minimum standard deviation of edge density

iT . 

13. )iT( = Maximum standard deviation of edge density

iT . 

14. 
)iT(

)iT(
CS




  

15. Until 











 


2

w)EDWmax(
wCS  

16. Update the clusters points, repeat step 7 to step 14. 

17. Finally we obtain the cluster centers. 

3. Formulation of LINEX HELLINGER 

Distance Based Intuitionistic Fuzzy C 

Means Clustering 

3.1. Intuitionistic Fuzzy C-means (IFCM) 

Algorithm 

Intuitionistic fuzzy set given by Atanassov [1] considers 

both membership Xx),x(  and non-membership 

Xx),x(  . An intuitionistic fuzzy set A in X, is written as 

 Xx\)x(A),x(A,xA   

where ]1,0[)x(A  , ]1,0[)x(A  are the membership 

and non-membership degrees of an element in the set A with 

the condition 1)x(A)x(A0  when 

)x(A1)x(A   for every x in the set A, then the set A 

becomes a fuzzy set. Also indicated a hesitation degree, 

)x(A which arises due to lack of knowledge in defining the 

membership degree of each element x in the set A and is 

given by 

)x(A)x(A1)x(A  , 1)x(A0   

In [1] intuitionistic fuzzy c-means, minimizes the objec-

tive function as: 













 m1i1
e

C

1i
i

2
kvix

C

1i

N

1k

m
ikuIFCMJ                                         (3) 

ikiku*ik
u  , where *

iku  denotes the intuitionistic 

fuzzy membership and 
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





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c
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iku
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iku1
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iku1ik 




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









         (5) 





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N

1i

m
iku

N

1i
ixm

iku

kv               (6) 





N

1k
ik

N

1
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This iteration will stop when 








  k

iku1k
ikuijmax , 

where is a termination criterion between 0 and 1, where 

as k is the iteration steps. This procedure converges to a local 

minimum or a saddle point of IFCMJ . 

3.2. LINEX HELLINGER Distance Based 

Intuitionistic Fuzzy C-means (IFCM) 

Algorithm 

In this section, we want to use the LINEX HELLINGER 

distance based Intuitionistic fuzzy c-means (IFCM) algo-

rithm when the over estimating and the under estimating are 

not of the same importance. The procedures are the same as a 

Intuitionistic fuzzy c-means algorithm. All the entities are 

assigned to their nearest centroid from MST, using a LINEX 

loss function as the dissimilarity distance. The procedure 

continues until there is no change in clusters. Now consider 

the following optimization problem, 

Objective function: 

*
i1

c

1i

*
iijWLINEX

n

1j
ij

m*
c

1i
IFCM ev,x(Lu)C,U(J



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MSTfromivofreedeg)iv(deg 
 

3.3. Updating Membership 

To obtain equation for calculating membership we mini-

mizing the objective function )V,U(WIFCMJ  with con-

straint conditions 

n............,2,1k,c...........,2,1i1iku0   

n............,2,1k1
c

1i
iku 


. 

c............,2,1in
n

1k
iku0 



  

Can be solved by using the Lagrangian multiplication as 

follows: 

To find min )V,U(WIFCMJ  it is sufficient to minimize 

the following inner sum for fixed k: 

put )ijv,iku(WLINEXLikL   
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Substitute (12) in (11). we obtain 
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The general equation is used to obtain membership ranks 

for objects in data for finding meaningful groups. 

3.4. Obtaining Cluster Prototype Updating 

To find min )V,U(WLINEXJ  it is sufficient to minimize 

the following inner sum for fixed i: 

 

 























































n

1k
1ijvkjx

2

1

ijvkjx
2

1
exp

jiwik
mu

 

Taking the partial derivative of objective function with re-

spect to ijv and setting the result to zero, we have the general 

form of updating center as 
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where ikikuiku  , where 
iku denotes the intuition-

istic fuzzy membership and 
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The LINEX HELLINGER distance is suitable for cluster-

ing in which it can actually induce the necessary conditions. 

This iteration will stop when








  k

iku1k
ikuijmax  

The MST based LINEX HELLINGER _IFCM algorithm 

iteratively optimizes WLINEXJ by continuous updating

iku and ijv until the difference in successive iku  values is 

very small  , where   is a small positive value between 0 

and 1. 

4. Efficient LINEX HELLINGER 

Distance Based IFCM 

4.1. Efficient LINEX HELLINGER_IFCM 

Algorithm 

Stage 1: Set the cluster centroids  c
1jjv
  by using 

LINEX measure MST initialization method. 

Stage 2: Compute the membership function using (13) 

Stage 3: Update the cluster centroids using (14) 

Stage 4: Go to stage (3-5), repeat until convergence. 

Stage 7: Image segmentation after defuzzification and then 

a region labeling procedure is proposed. 

Stage 8: The termination criterion is as follows 

 1mJmJ , where m is the iteration count, 

 is a small number that can be set by the user. 

The proposed efficient LINEX HELLINGER distance 

based MST obtained cluster centers; the LINEX 

HELLINGER distance based IFCM algorithm continues 

iteratively updates, membership and centroids with these 

values. When this improved, Efficient LINEX HELLINGER 

distance based IFCM algorithm has converged, another de-

fuzzification process takes place in order to convert the fuzzy 

partition matrix to a crisp partition matrix that is segmented. 

 

4.2. Validation Function Based on Feature 

Structures 

Two representative functions for the fuzzy partition name-

ly; Partition coefficient pcV  and Validation function pV are 

used to evaluate the validity of clustering [15, 16]. 








n

1i

c

1j

2
ij

*u
n

1
pcV                   (17) 

The proposed efficient LINEX HELLINGER distance 

based MST obtained cluster centers; the LINEX 

HELLINGER distance based IFCM algorithm continues 

iteratively updates, membership and centroids with these 

values. When this improved, Efficient MHIFCM algorithm 

has converged, another defuzzification process takes place in 

order to convert the fuzzy partition matrix to a crisp partition 

matrix that is segmented. 
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5. Results and Discussion 

 
Figure 1. Scatter diagram for random dataset. 

Table 1. Random Data. 

Data Intensity Data Intensity 

S. No X Y I (v) S. No X Y I (v) 

1 2.50 3.00 0.75 11 15.80 20.50 0.25 

2 3.80 3.50 0.50 12 11.80 12.50 0.35 

3 7.00 1.80 0.15 13 15.50 14.50 0.80 

4 3.10 4.80 0.18 14 5.50 10.50 0.70 

5 5.50 7.50 0.45 15 18.50 19.50 0.40 
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Data Intensity Data Intensity 

6 8.50 9.50 0.75 16 12.50 13.80 0.25 

7 10.80 11.50 0.60 17 21.80 12.50 0.95 

8 4.20 3.80 0.25 18 19.80 20.50 0.25 

9 2.80 1.80 0.45 19 19.00 20.00 0.60 

10 12.50 20.50 0.65 20 11.00 12.00 0.30 

Table 2. Dissimilarity matrix. 

S. No 

Co-ordinate intensity 

           

x y I (v) vertex 1 2 3 4 5 6 7 8 9 10 

1 2.50 3.00 0.75 1 0.0000 0.0408 0.2892 0.0942 0.3091 0.6035 0.8693 0.0867 0.0449 1.5020 

2 3.80 3.50 0.50 2 
 

0.0000 0.1761 0.0490 0.1841 0.4338 0.6711 0.0140 0.0780 1.3012 

3 7.00 1.80 0.15 3 
  

0.0000 0.2876 0.3871 0.5657 0.7566 0.1521 0.2048 1.4524 

4 3.10 4.80 0.18 4 
   

0.0000 0.1455 0.4181 0.6427 0.0337 0.1618 1.2158 

5 5.50 7.50 0.45 5 
    

0.0000 0.1029 0.2566 0.1525 0.4303 0.7407 

6 8.50 9.50 0.75 6 
     

0.0000 0.0539 0.3941 0.7374 0.4416 

7 10.80 11.50 0.60 7 
      

0.0000 0.6146 1.0036 0.2621 

8 4.20 3.80 0.25 8 
       

0.0000 0.1144 1.2360 

9 2.80 1.80 0.45 9 
        

0.0000 1.6847 

10 12.50 20.50 0.65 10 

         

0.0000 

Table 3. LINEX measure based minimal spanning tree edges. 

S. No Edges LINEX HELLINGER distance S. No Edges LINEX HELLINGER distance 

1 (1, 2) 0.0408 11 (20, 12) 0.0051 

2 (2, 8) 0.0140 12 (12, 16) 0.0120 

3 (8, 4) 0.0337 13 (16, 13) 0.0714 

4 (8, ) 0.1144 14 (13, 15) 0.1204 

5 (8, 3) 0.1521 15 (15, 19) 0.0064 

6 (8, 5) 0.1525 16 (15, 18) 0.0124 

7 (5, 14) 0.0619 17 (15, 11) 0.0313 

8 (14, 6) 0.0767 18 (11, 10) 0.0635 

9 (6, 7) 0.0539 19 (11, 17) 0.3183 

10 (7, 20) 0.0136 
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Table 4. Degree of minimal spanning tree edges. 

S. No Degree of MST S. No Degree of MST 

1 1 11 3 

2 2 12 2 

3 1 13 2 

4 1 14 2 

5 2 15 4 

6 2 16 2 

7 2 17 1 

8 5 18 1 

9 1 19 1 

10 1 20 2 

 
Figure 2. LINEX HELLINGER distance based Minimal spanning tree connected through points. 

Table 5. Edge density minimal spanning tree edges. 

S. No Edges Edge density S. No Edges Edge density 

1 (1, 2) 0.0577 11 (20, 12) 0.0102 

2 (2, 8) 0.0443 12 (12, 16) 0.0240 

3 (8, 4) 0.0754 13 (16, 13) 0.1428 

4 (8, 9) 0.2558 14 (13, 15) 0.3405 

5 (8, 3) 0.3401 15 (15, 19) 0.0128 

6 (8, 5) 0.4822 16 (15, 18) 0.0248 

7 (5, 14) 0.1238 17 (15, 11) 0.1084 

8 (14, 6) 0.1534 18 (11, 10) 0.1100 

9 (6, 7) 0.1078 19 (11, 17) 0.5513 

10 (7, 20) 0.0272 
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Our weighted LINEX Hellinger distance based minimal 

spanning tree algorithm constructs MST from the dissimilari-

ty matrix is shown figure 2. Figure 2 shows a typical exam-

ple of weighted LINEX Hellinger measure MST1 construct-

ed from point set (from Dissimilarity matrix), in which in-

consistent edges are removed to create subtree (clus-

ters/regions). our algorithm finds the center of each clusters, 

which will be useful in many applications. Generally in most 

of the clustering algorithm data points can be represented as 

dissimilarity matrix representation. It contains the distance 

values between the data points represented as lower or upper 

triangular matrix. First to identify the longest edge or 













 


2

w)EDWmax(
ww in the MST to generate subtree 

(clusters). Table 4, the longest edge weight 0.5513 connect-

ing the data points 11 and 17 is find to be inconsistent one. 

By removing the inconsistent edge from the weighted 

LINEX HELLINGER_MST, data points partitioned into two 

subtrees or clusters 1T  and 2T  namely.

 20,19,18,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,11T   and

 172T  . Now minimal spanning tree produced outlier is 

{17}. Next to find minimum and maximum standard devia-

tion of iT  then Cluster Separation value less than 0.5625 is 

valid. Secondly to remove next longest edge, weighted 

LINEX HELLINGER distance based MST partitioned into 

Three subtrees or clusters 1T , 2T and 3T  namely 

 9,8,4,3,2,11T  ,  20,16,14,13,12,7,6,52T  and 

 19,18,15,11,103T  . Next to find minimum and maxi-

mum edge and to calculate standard deviation of iT  then 

Cluster separation value less than 0.5625 is valid. Here 

standard deviation of edge density 1350.01T  , Standard 

deviation of edge density 0620.02T  and Standard devia-

tion of edge density 0520.03T   then 

5740.03890.0
1350.0

0520.0
CS  then we stop the removing 

inconsistent edges.. Finally minimal spanning tree produced 

three cluster center and 1 outliers. Then the center of the 

cluster and its convergence of standard FCM and LINEX 

HELLINGER distance based IFCM are determined under 

successive interations of experiments using data points. With 

the new efficient objective function based LINEX Hellinger 

distance induced weighted measure the termination value is 

achieved, with very less iteration and with much better per-

formance in getting membership (Table 6) than standard 

FCM. Table 7 gives the number of iteration to achieve the 

results of cluster on the data points by standard FCM and 

weighted LINEX_IFCM. It is clear from the final cluster, 

membership (Table 6), scatter diagram (Figure 1), minimal 

spanning tree (Figure 2) that our proposed LINEX Hellinger 

_IFCM induced weighted degree of minimal spanning tree is 

much faster than the standard FCM and the method is con-

verged fast to terminate condition with less run time. To test 

the effectiveness of weighted LINEX_IFCM, the edge densi-

ty minimal spanning tree based IFCM is used as center. This 

is done to find out the fuzzy membership and appropriate 

number of clusters. Thus, we have concluded the final opti-

mal clusters formed as 3 (Figure 3). This algorithm has also 

reduced the number of iterations. Best result is achieved by 

this measure fuzzy partition coefficient pcV  maximum and 

validation function pV  minimum (Table 8). The weighted 

LINEX_IFCM clustering algorithm has the following mem-

bership value intimacy (Table 6). 

Table 6. Final membership of three clusters of LINEX HELLINGER distance based Intuitionistic FCM method and object allocation. 

Co-ordinate (x, y) intensity 

   appropriate cluster 

S. No x y I (v) Mem-1 Mem-2 Mem-3 

1 2.50 3.00 0.75 1 0.9213 0.0523 0.0265 

2 3.80 3.50 0.50 2 0.9895 0.0072 0.0032 

3 7.00 1.80 0.15 1 0.7820 0.1444 0.0736 

4 3.10 4.80 0.18 1 0.8808 0.0830 0.0362 

5 5.50 7.50 0.45 2 0.4630 0.4292 0.1077 

6 8.50 9.50 0.75 2 0.0794 0.8548 0.0658 

7 10.80 11.50 0.60 2 0.0046 0.9858 0.0096 

8 4.20 3.80 0.25 5 0.9710 0.0202 0.0087 

9 2.80 1.80 0.45 1 0.9149 0.0551 0.0299 
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Co-ordinate (x, y) intensity 

   appropriate cluster 

S. No x y I (v) Mem-1 Mem-2 Mem-3 

10 12.50 20.50 0.65 1 0.0559 0.2632 0.6809 

11 15.80 20.50 0.25 3 0.0199 0.0788 0.9013 

12 11.80 12.50 0.35 2 0.0269 0.8865 0.0866 

13 15.50 14.50 0.80 2 0.0480 0.3319 0.6201 

14 5.50 10.50 0.70 2 0.2367 0.6315 0.1318 

15 18.50 19.50 0.40 4 0.0026 0.0093 0.9882 

16 12.50 13.80 0.25 2 0.0490 0.7068 0.2442 

17 21.80 12.50 0.95 1 0.0852 0.2753 0.6395 

18 19.80 20.50 0.25 1 0.0161 0.0513 0.9326 

19 19.00 20.00 0.60 1 0.0050 0.0171 0.9779 

20 11.00 12.00 0.30 2 0.0171 0.9420 0.0410 

Table 7. Comparison of iteration count. 

 

No. of iterations No. of clusters 

FCM 11 3 

KFCM 8 3 

Edge density MST initialization method based 

LINEX Hellingerdistance based Intuitionistic FCM 
3 3 

Table 8. Cluster validity function. 

 

Vpc Vp 

FCM 0.8325 0.1825 

KFCM 0.8238 0.1720 

MST initialization method based LINEX 

Hellinger Intuitionistic FCM 
0.8889 0.0661 

 
Figure 3. MST initialization method based LINEX Hellinger distance using Intuitionistic FCM, final cluster three. 
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6. Conclusion 

In this paper, we have proposed a modified intuitionistic 

fuzzy c-means algorithm (IFCM) induced weighted LINEX 

Hellinger distance measure using degree of MST and solved 

analytically the objective function of the weighted LINEX 

Hellinger_IFCM method using Lagrange method of unde-

termined multiplier. Besides, the intuitionistic fuzzy set and 

non-membership degree are generated by an improved meth-

od, which highlight the role of uncertainty effectively. The 

algorithm overcomes problems involved with membership 

values of objects to each cluster by generalizing degrees of 

membership of objects to each cluster. For the initial parti-

tion matrix, if the membership degrees and non-membership 

degrees of the classified objects to the categories are obvi-

ously different, the iteration times will be reduced according-

ly. Compared with FCM clustering algorithm, Experimental 

results demonstrate that the performance of random image 

data points, the pixel clustering effect and the robustness to 

noise of the proposed algorithm are all significantly better 

than other algorithms method. 
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